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But Stubb, he eats the whale by its
own light, does he? and that is
adding insult to injury, is it? Look at
your knife­handle, there, my
civilized and enlightened gourmand,
dining off that roast beef, what is
that handle made of?­ what but the
bones of the brother of the very ox
you are eating? And what do you
pick your teeth with, after devouring
that fat goose? With a feather of the
same fowl. And with what quill did
the Secretary of the Society for the
Suppression of Cruelty of Ganders
formally indite his circulars? It is
only within the last month or two
that the society passed a resolution
to patronize nothing but steel pens.

H. Melville (1851)
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Introduction

Source: http://ecomarinepower.com

Figure 1.1.: JAMDA sail installed on coastal freighter in Japan (1980)
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1.1. Drivers for Wind Assist

the near­term. The barrier to broader market uptake of wind­assist concepts is
not technological readiness; several viable concepts for wind propulsors are com­
mercially available. Rather, the obstacle is a lack of experience with industrialized
sailing and unwillingness to take risks as an ’early adopter’. At the end of 2019, five
wind­assist vessels were operating, and at the end of the current year, this figure
will grow to 19. Projected wind­assist fleet size is estimated at 3­7k in 2030 (see
Figure 1.3).

Figure 1.3.: Market projection for energy­efficient ships, showing upcoming regulatory measures.

The further development of this promising technology is hampered by a poor
understanding of the interaction effects between wind propulsors and the hydro­
mechanics of commercial ships. For the ship owner or operator, this lack of experi­
ence with industrial sailing introduces uncertainty in a profoundly risk­averse sector.
For the regulator who wishes to promote the uptake of sustainable technologies,
the knowledge gap raises the spectre of misdirected policies that fail to advance
wind­assisted ship propulsion as a viable component of the energy transition. In
fact, wind propulsion is the only intervention in the maritime shipping sector that
promises significant reductions in greenhouse gas emissions in the near term. Fur­
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1. Introduction

thermore, besides the simple arithmetic of fuel savings and limiting exposure to
increasingly volatile fuel prices, wind assistance raises the possibility of engaging
with an activist consumer class and potentially increasing the perceived value of
shipped products.
Relevant research topics encompass a wide range of disciplines, extending be­

yond physical modeling to include logistics and economics. The further develop­
ment of this promising technology, and its eventual implementation, will be made
possible by these academic, research and industry partners working in concert.
Wind­assisted ship propulsion is a dedicated research theme at the Ship Hydro­
mechanics section of Delft University of Technology. Present research under the
Sail Assist project is divided between two Ph.D. projects: focusing on the hydrody­
namics (the thesis), and the aerodynamics (Giovanni Bordogna) of wind­assisted
commercial vessels.

�7�K�H �S�U�H�V�H�Q�W �W�K�H�V�L�V �Z�R�U�Nfollows two research lines: simulation work, the Delft
Wind­Assist series and database; and several experimental campaigns in the large
towing tank of the Ship Hydro­mechanics laboratory, SHS­3ME, TU Delft. As part of
the Sail Assist research group, and in collaboration with the Polytechnic University
of Milan, University of Manchester, and the University College London, the hydro­
mechanic modeling developed in this thesis has been integrated into an techno­
economic assessment of wind­assisted ships (Chapter 5).
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1.1. Drivers for Wind Assist

Source: http://dykstra.nl

Figure 1.4.: The Ecoliner concept, by Dykstra Naval Architects.
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1. Introduction

course­keeping, followed by a presentation of results from experimental campaigns
for wind­assist­appended hull geometries. This work grew out of promising results
obtained during the experimental validation for the simulation method, wherein the
simulation method was unable to reproduce towing tank results for the bilge keel
case. This new empirical data set is a contribution not only to the nascent field of
sailing commercial ships but also the broader maneuvering literature. RANS­CFD
simulation validation for high­aspect ratio appendage types such as rudders and
skegs was successful; these results are also presented in this chapter.

Chapter 5: Techno­economic Assessment

Finally, whereas a physical modeling for wind­assist vessels falls under the fields
of aerodynamics, hydro­mechanics, and marine engineering—wherein this thesis is
devoted to the hydro­mechanics—a complete assessment of the opportunities pre­
sented by this technology will include voyage optimization, logistics, and economics.
A collaborative effort was initiated by the author to combine vessel modeling at Delft
University of Technology with the work of researchers in vessel routing and eco­
nomics to demonstrate commercial viability. The casual reader would do well to
begin with this final chapter (Chapter 5), as it provides a succinct review of the
broader problem domain.
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2
Modeling for

Hydro­mechanic Response
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Source: treshombres.eu/

A sailing commercial vessel with a cargo of high value consumer products such as
wine and chocolate makes trans­Atlantic crossings propelled entirely by the wind.

The cost of shipping is drastically reduced while the perceived value of the shipped
product is increased.

treshombres.eu/
















































3
RANS­CFD Methodology
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Source: NORSEPOWER.com/

A bulker transporting crude is retrofitted with wind propulsors.

The owner of this hybrid vessel saves 10 percent on fuel oil annually and receives
credit for carbon sequestration as part of European Union sustainable development
goals.

NORSEPOWER.com/










3. RANS­CFD Methodology

Figure 3.1.: Mesh setup for full­scale simulations
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3.2. Verification & Validation

(Figure 3.7). The setup for the experiment was altered for the 2016 campaign. The
fully constrained setup, with the six­component measurement frame, rather than
the sailing yacht setup, gave better control over the position of the model, and
provides extra flexibility when designing the arrangement of sensors, again with
the aim to minimize experimental uncertainty. The 2016 experiments are described
in the remainder of this section. The yacht setup of the Delft Ship Hydro­mechanics
Laboratory is documented in [65, 103].
The experimental uncertainty is determined according to the ITTC guideline for

planar motion tests ([54]). This presentation is only brief. A review of experi­
mental uncertainty of the 2016 validation campaign and the 2018 bilge keel cam­
paign (Chapter 4) is given in Appendix B. The bias error for model alignment was
the primary reason for switching to the hexapod setup. The result was excellent:
where the alignment was previously the leading contribution to the experimental
uncertainty (2015 test with the yacht setup), now the precision error is the leading
contribution, whereas the alignment is one of the smallest.

(a) Sailing yacht experimental setup for 2015 campaign.

(b) Hexapod / 6dof frame setup for 2016 campaign

Figure 3.7.: Experimental setup for 2015 and 2016 validation campaigns.

The bias error for forces measured with the six­component frame was estimated
by repeating the calibration process for the fully assembled frame. The six­component
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3.3. Reynolds Scaling Effects and Simulation Validation

Figure 3.20.: Simulation results at full scale and model scale for effective draft and center of lateral
resistance. Fitted models and simulation validation levels are shown

Figure 3.21.: Simulation and experimental results from the bare­hull validation set for resistance due to
leeway.
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Appendages for Sailing

Ships
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Source: vikinglines.co.uk

A ferry operator in Scandinavia leverages public subsidies to install wind propulsors
on several ferries.

An environmentally conscientious public is engaged and ferry traffic increases while
operating costs are reduced.

vikinglines.co.uk






















4. Appendages for Sailing Ships

Figure 4.7.: Assembly of bilge keel B­P3­L1­H3 (16)
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4.4. Discussion of Sailing Performance

Figure 4.16.: The center of lateral resistance for deadwood variants (CS1­CS3). The associated uncer­
tainty for nine degrees leeway is indicated for reference.

Figure 4.17.: Relative response for linear sideforce and yaw moment coefficient for identical bilge keel
and centerline keel variants.
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4.4. Discussion of Sailing Performance

Figure 4.19.: Bilge keel variants
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4.4. Discussion of Sailing Performance

Figure 4.20.: Centreline­keel appendages
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5
Wind­Assist for Commercial

Ships
�1�L�F�R �Y�D�Q �G�H�U �.�R�O�N
Giovanni Bordogna
James Mason
Jean­Marc Bonello
Arthur Vrijdag
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Source: bluewaspmarine.com

A wind­hybrid Panamax ship with five Flettner rotors works in the global trade for
ethically sourced dry bulk.

Compliance under environmental regulations is accompanied by a halving of op­
erational expenses; while the perceived value of the shipped product is increased.
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5.1. Vessel Model

Figure 5.3.: Polar diagram showing thrust benefit for a design candidate. 12.4 knots boat speed.
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odel

Figure 5.5.: Array of WASP installations considered for the DAMEN BTa 19500 vessel.
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5.1.
VesselM

odel

Figure 5.6.: Optimum velocity ratios for Flettner rotors 1­3. The hatched portion of the polar of Rotor 3 indicates a negative velocity ratio (­5).
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5.1. Vessel Model

Figure 5.7.: Vessel heel angle (left) and rudder angle (right) for the starboard side only. An 10° operating
limit is imposed for both angles. 12.4 knots boat speed.
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5.1. Vessel Model

The required engine speed, brake power, and total fuel consumption for each
combination of true wind speed and direction was determined for a ship with and
without WASP, with a fixed ship speed of 12.4 kts.

Figure 5.9.: Main engine speed envelope and SFC curves. Flags are indicated with red and blue markers.

They are presented in a combined manner along with the engine envelope in Fig­
ure 5.9, showing a very wide spread, ranging from below minimum engine speed to
above maximum engine speed. The operating points within the engine envelopes
show that the engine SFC for WASP concepts is highly dependent on the wind
condition.
The colored markers in Figures 5.9 and 5.10 indicate operating points that are not

possible because they are located outside the engine operating envelope. The red
markers in the “wind from ahead” situation indicate that the engine cannot deliver
the power/speed required to sail at the fixed ship speed, as the resistance has
been increased due to the strong headwinds and corresponding wave condition.
These operating conditions correspond to a ship speed reduction due to strong
headwinds/seas, which is currently not captured in the vessel model or routing
model. However, for these cases, the reference ship and the WASP concept will be
similarly hindered (i.e. the fuel savings will be zero).
The blue markers in the “wind from astern/beam wind” condition indicate that the

required engine speed is less than the minimum engine speed. In reality, the engine
would run around minimum engine speed and the ship speed increase slightly, or
the engine would be switched off and the ship would sail more slowly. The blanked
region in the “wind from astern/ beam wind” condition indicates that the sails by
themselves deliver sufficient thrust to achieve the vessel speed without engaging
the engine. For this condition, the WASP concept will accelerate to a higher vessel
speed where a new balance is found between resistance and aerodynamic thrust.
However, this is not incorporated in the present modeling.
In combination with the rotor­related fuel consumption, this results in a total
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5. Wind­Assist for Commercial Ships

Figure 5.10.: Fuel consumption polar for WASP case. Red crosses indicate operating points outside the
engine envelope.
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5.2. Weather Routing

value better represents the fuel savings that a ship would expect to achieve when
traveling on this route for one journey. The results demonstrate greater fuel sav­
ings on the northbound journey due to the presence of a dominant south­westerly
wind. There is a clear variation in fuel savings when comparing the simulations for
2015 and 2016, especially for the northbound journey, once again highlighting the
significance of simulating fuel savings across multiple years. The savings from this
study are lower than previous estimates in the North Sea by [107], though Traut
assess both different vessel and rotor sizes, and make simplifications for interaction
effects in their vessel modeling.
The impact of route optimization is calculated by comparing the fuel­optimized

route for the three rotor case with the shortest distance route for the reference case.
The results show yearly­averaged fuel savings of between 25.8% and 36.5% when
combined with WASP. Fuel­optimized routing for the northbound journey increases
absolute yearly­averaged fuel savings by approximately 6%, while the southbound
journey shows the largest increase in absolute fuel savings (10% in 2015 and 8.5%
in 2016). This increase concurs with previous studies [6, 126]. The fuel savings
from route optimization in this study are limited by the implementation of a constant
vessel speed.

Figure 5.12.: Box and whisker plots showing the distribution of fuel savings for the shortest distance (left)
and fuel­optimized (right) routes for a combination of 2015 and 2016. The median value for northbound
(orange) and southbound (blue) voyages are also shown as continuous lines.

Figure 5.12 shows a box and whisker chart displaying the distribution of results
for the shortest distance and fuel­optimized routes. The fuel savings display sig­
nificant fluctuations depending on month, as also seen in previous studies [100].
The spread of fuel savings for each individual month is also large. This variabil­
ity is widely accepted as one of the key barriers to the uptake of wind propulsion
[88]. The months where the fuel savings are greater on the shortest distance route
demonstrate the largest absolute impact from route optimization, with average fuel
savings of over 50% in both January and December.
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5. Wind­Assist for Commercial Ships

MRV data, independent metrics will allow for comparisons with vessels in the same
peer group [95]. In this case study, the Port of Rotterdam and Trondheim have
discount schemes for port dues based on the Environmental Sustainability Index
(ESI) that could lead to monthly savings of between $7,900 and $13,000 based on
the assigned rating [85, 108]. While this incentive­based mechanism is increasing
in popularity, it faces a split incentive market barrier with time­chartered vessels
where the owner of the vessel does not benefit from the port dues discounts and
thus investment is less attractive unless the vessel is spot chartered or operated by
the owner [62, 88].

Figure 5.15.: Payback period on Rotterdam­Trondheim route with port due discount and CP sensitivity.

Another mechanism that is frequently proposed for curbing GHG emissions is the
use of carbon pricing (CP) (assuming a carbon factor of 3.08 gCO2/gLSHFO as per
[99]. In their quantitative analysis, IMarEST concluded that a carbon price in the
range of 100 ­ 500$/t may be required to align shipping with the IMO 2050 emissions
ambition [52]. The large range is attributed to the assumptions related to renew­
able electricity price projections for various scenarios. The application of both these
strategies is presented in Figure 5.15, where both can be seen to make a signifi­
cant difference, making a stronger case for investing in WASP given the additional
resilience to possible future environmental policy. At a policy level, the IMO is also
looking at a carbon intensity­based metric as part of its short­term policies compiled
through the DCS, thus investment in WASP could provide a measure of resilience to
avoid vessels becoming stranded assets due to environmental obsolescence [19].
Another approach to CP considered is the model used by the UK Department for
Transport in the recently published strategy aimed at de­carbonization of the sector,
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5.3. Economic and Environmental Assessment

score, calculated with significantly lighter wind conditions than encountered along
the North Sea route, was less affected by these operational constraints.
Yearly­averaged fuel savings from WASP on a route between Trondheim and

Rotterdam are estimated and WASP is shown to produce significant savings on
a shortest­distance route. Route optimization is also shown to deliver significant
additional fuel savings when combined with WASP and annual fuel and CO2 sav­
ings could typically be between 26% and 37% in the North Sea, depending on
weather conditions. Route optimization requires additional ships to maintain the
same service, due to the increase in voyage time incurred. The next iteration of
this collaborative work will incorporate variable vessel speed in the vessel modeling
and routing optimization, which has the potential to significantly increase both fuel
and CO2 savings and enable a closer examination of WASP vessel operation within
commercial constraints.
Both regulatory­ and market­based drivers will be key factors when considering

the economics of Flettner rotors. Traditionally, WASP technologies have been dif­
ficult to finance due to the conservative attitudes of financial institutions that will
favor more mature technologies perceived as carrying less risk [104]. The model
presented in this work offers a robust method of assessing the viability of tech­
nologies on specific vessels and trade routes that can be used to create a business
case for financing. Rotors are relatively simple to retrofit and thus applicable to a
wide variety of existing tonnage, which could provide an attractive solution to avoid
the stranding of assets in a carbon­constrained future. The investment in Flettner
rotors will prove increasingly beneficial through the favorable impact of installed
WASP technologies on the vessel EEDI, raising the possibility of qualifying for in­
centives such as Green Port Fees. From a market­based perspective, WASP trade
can be seen as a promising option for investment in the near term as the push for
transparency in shipping broadens to include more types of supply chains.
As with all energy­efficiency investments, the payback period projection only

holds when considering an owner­operator scenario. Other chartering models in­
troduce the split­incentive barrier where there is a disconnect between the party
that takes the risk of the investment and the party that benefits from it [60, 88,
91]. Thus, on the voyage­ or time­charter market, the owner needs to recoup the
costs through higher charter rates which make them less competitive, putting less
efficient vessels at an advantage and creating a canonical market for lemons [3].
This opportunity is another potential application of independent energy metrics and
standards that will increase transparency, empowering charterers to select vessels
based on their performance and also owners to negotiate profit­sharing agreements
with greater trust.
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6
Conclusions and

Recommendations

Figure 6.1.: E­Ship1, a 10500 DWT RoLo equipped with four 27 m Flettner rotors. In operation since
2010. (source: www.enercon.de).
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A
Delft Wind Assist Series
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A. Delft Wind Assist Series

Figure A.1.: Composition of the Delft Wind Assist Series
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A.2. Data Reduction

Figure A.7.: Data reduction for hull #2.
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A. Delft Wind Assist Series

Figure A.8.: Data reduction for hull #3.
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A.2. Data Reduction

Figure A.9.: Data reduction for hull #4.
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A. Delft Wind Assist Series

Figure A.10.: Data reduction for hull #5.
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A.2. Data Reduction

Figure A.11.: Data reduction for hull #6.
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A. Delft Wind Assist Series

Figure A.12.: Data reduction for hull #7.
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A.3. Appended Hull Series

Figure A.15.: Bilge keel variants
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A. Delft Wind Assist Series

Figure A.16.: Centreline­keel appendages

Table A.7.: Complete array of testing matrix for centerline keel geometries

Keel Set Identifier Position Length Height Hull
[mm] [mm] [mm]

f(length) C­P2­L1­H3 (34) 1735 333 30 34
C­P2­L2­H3 (34) 1735 667 30 34
C­P2­L3­H3 (34) 1735 1000 30 34

f(CL keel) C­P2­L1­H3 (34) 1735 333 30 34
B­P2­L1­H3 (1) 1735 333 30 1
B­P2­L1­H3 (16) 1735 333 30 16
C­P4­L2­H3 (34) 1135 667 30 34
B­P4­L2­H3 (16) 1135 667 30 16
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B
Uncertainty Analysis

No one believes the CFD results
except the one who performed the
calculation, and everyone believes
the experimental results except the
one who performed the experiment.

P.J. Roache, 1998
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B.2.
Validation

Experim
ent

(2016)

Figure B.7.: Precision bias estimate for 2016 Experiment. A vector sum of the offset determined using the zero­crossing for sideforce and yaw is used to
estimate the alignment fault.
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B.2. Validation Experiment (2016)

Figure B.8.: Linesplans for hulls of the validation set.
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B. Uncertainty Analysis

Figure B.9.: Simulation and experimental results for appended cases for resistance due to leeway.

Figure B.10.: Simulation and experimental results for appended cases for sideforce.
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